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Abstract. We examine a one-dimensional model of a decaying quantum system, e.g., one that
could simulateα decay. A particle is initially confined in a region and leaks out, tunnelling through
a potential barrier. The same model has been examined before, primarily to study decay properties
which are determined by the wavefunction of the particle within the potential barrier. However, the
wavefunction of this model (and of any similar models) outside the potential barrier has not been
obtained explicitly as a function of position and time. We obtain the wavefunction outside as well as
inside the potential barrier by solving the time-dependent Schrödinger equation, and explore various
features of the space-time development of the system. In an early study by Winter it was pointed
out that the probability current just outside the barrier, after a long time, may fluctuate and can be
negative, i.e., inward. We find that under certain circumstances the amplitude of the fluctuations
increases significantly as the distance from the barrier increases. We propose a simple approximate
wavefunction that works well when the decay is very slow. The Gamow wavefunction, commonly
used to describe theα-decay process, is not appropriate at large distances. Our wavefunction can
be used anywhere and is normalized in the usual manner.

1. Introduction

The evolution of a decaying quantum state is one of the oldest problems in quantum mechanics.
As a typical case let us consider the decay of a quantum system of the type initiated by
Gamow [1] and by Condon and Gurney [2]. The model assumes that a particle is initially
confined and at a certain time,t = 0, it begins to leak out by tunnelling through a potential
barrier. The model has been studied extensively and various ingenious methods have been
developed. The model is successful in explaining the exponential decay law which has
ample experimental support. More detailed scrutiny revealed interesting deviations from the
exponential law for very smallt as well as for very larget . We still feel, however, that our
understanding of the decay problem is far less than complete. This is because, as far as we
know, the wavefunction of the particle of the model over the entire space has not been worked
out explicitly as a function of position and time. All work done so far on the decaying state
focused on the wavefunction at and inside the potential barrier, and very little is known about
the behaviour of the wavefunction outside the potential barrier. The so-called Gamow state
or Gamow wavefunction is often used [1, 3]. The Gamow wavefunction, however, increases
exponentially in magnitude at large distances. Therefore, despite its merits for determining
α-particle decay rates, etc, the Gamow wavefunction is not a desirable wavefunction over all
space because it is not square integrable. This difficulty stems from the fact that, in the Gamow
wavefunction, the initial condition that the decay process begins att = 0 is not fully taken into

0305-4470/99/356347+14$30.00 © 1999 IOP Publishing Ltd 6347



6348 W van Dijk et al

account [4]. The main purpose of this paper is to find the correct wavefunction at all distances
by explicitly solving the time-dependent Schrödinger equation.

A problem in which such a time-dependent wavefunction at large distances is needed is
the quantum mechanical treatment of atomic ionization caused byα decay of the nucleus.
Traditionally this ionization problem has been treated, after Migdal, by regarding the emitted
α particle as a point charge that obeys Newton’s equation of classical mechanics [5, 6]. In a
fully quantum mechanical calculation, theα particle should be treated as a wave that leaks
out of the nucleus. We are aware of only one calculation in which theα particle is treated
quantum mechanically [7]. In that calculation, however, theα particle is described by means of
a quasi-stationary state with complex energy. Sinceα decay is an intrinsically time-dependent
phenomenon, the validity of such quasi-stationary treatment is not entirely obvious. In this
paper we focus on the decay process itself but in a forthcoming paper we plan a fully quantum
mechanical calculation for a model that simulates the atomic ionization process. In order to do
such a calculation we have to be able to first solve the time-dependent Schrödinger equation
for a decaying system.

Instead of a detailed realistic calculation we consider a simple one-dimensional model.
This is the same model that has been examined by a number of people, in particular,
by Petzold [8] and Winter [9], and more recently by Garcı́a-Caldeŕon et al [10–12].
Although simple, the model illustrates many interesting features as well as difficulties that
are characteristic of the decay process in quantum mechanics. The model consists of a particle
which is subject to an infinite repulsive wall atx = −a and a repulsive barrier represented by
a δ-function potential atx = 0. The particle is initially confined in the region of−a < x < 0
and begins to leak out att = 0 tunnelling through the barrier. As shown by Petzold [8],
by Winter in more detail [9] and also by Garcı́a-Caldeŕon et al [10–12], the time-dependent
wavefunctionψ(x, t) can be expressed in the form of an integral with an integrand that can be
written down explicitly. The integrand, however, is highly oscillatory with large amplitude. It
is difficult to carry out the integration numerically except for small values ofx. Probably for
this reason,ψ(x, t) of the model has not been obtained explicitly outside the barrier,x > 0.

Of course, the wavefunction inside the potential barrier contains a significant amount of
information on the decay process. Winter examinedψ(0, t) and the associated currentj (0, t)
at the barrier. He illustrated small deviations from the exponential decay law for extremely
small t and extremely larget . A particularly remarkable and curious feature that he found is
thatj (0, t) fluctuates as a function oft in a certain larget region. It can be negative, meaning
that the current can flow inward. It would be interesting to see howj (x, t) behaves forx > 0.

In section 2 we set up the model and briefly summarize some of Winter’s results. We
then extend Winter’s calculation by carrying out the integral forψ(x, t) for larger values of
x. We have been able to do this only to a certain limit. We discuss the nature of the difficulty
that is encountered. We show that the amplitude of fluctuations that Winter found forj (0, t)
becomes much larger asx increases. In section 3 we integrate the time-dependent Schrödinger
equation numerically and obtainψ(x, t) in the entire space. In section 4 we propose a simple
approximate wavefunction that works well when the decay process is very slow. The conclusion
and a discussion are given in section 5. The appendix enlarges on the negative local current
density which is present in the model.

2. Model

Consider a one-dimensional, non-relativistic model, with a particle of massm in a potential
that consists of an infinite repulsive wall atx = −a and a repulsiveδ-function potential at
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x = 0 [8–12],

V (x) =
{
∞ x < −a
(g/2m)δ(x) x > −a (1)

wherea > 0 andg > 0. We use units such that ¯h = 1, throughout. In numerical illustrations,
we further seta = 1 and 2m = 1. Let us follow Winter’s elementary approach rather than the
Laplace transform method used in [8,10–12].

SinceV (x) has no attractive part, there is no bound state. The spatial part of the
wavefunction of the stationary continuum state of energyE = k2/2m can be written as

φk(x) =


1√
π

sin(ka + δk) sink(x + a)

sinka
−a < x < 0

1√
π

sin[k(x + a) + δk] x > 0
(2)

where the phase shiftδk is given by [13]

δk = −ka + tan−1

(
ka

G + ka cotka

)
G = ga. (3)

The quantityG is a dimensionless constant. It is understood that the wavefunction always
vanishes forx 6 −a. We normalize the stationary wavefunctions in the usual manner [14] as∫ ∞

−a
φk(x)φk′(x) dx = δ(k − k′). (4)

For the strength of theδ-function potential atx = 0, Winter tookG = 6 and 20. We,
however, takeG = 6 and 100. In this way we can see the contrast between fast and slow
decay processes more clearly. The phase shiftδk may go throughπ/2 (modπ ) upwards for a
certain value ofk orE. This means that there is a resonance at that energy. Such a resonance
corresponds to one of the poles of the integrand that we examine shortly. WhenG = 6 there
is only one resonance due to a pole labelled byν = 1. WhenG = 100 there are 15 resonances
with ν = 1, 2, . . . ,15.

We are interested in the time-dependent wavefunction that is subject to the initial condition

ψ(x, 0) =
{√

2/a sin(nπx/a) −a < x < 0

0 0< x
(5)

wheren = 1, 2, . . . . In the illustrations that follow we taken = 1. There is no particular
difficulty in taking n = 2, 3, . . . , or a combination of components with different values of
n. The functionψ(x, 0) is normalized. The expectation value of the energy in this state is
(nπ/a)2/2m. The wavefunctionψ(x, t) at a later timet can be expressed as a superposition
of stationary states. Winter writes it as

ψ(x, t) =
∫ ∞

0
f (q) dq (6)

where

f (q) = 2n

√
2

a

e−iq2T q sinq[q sinq(ξ + 1) +Gθ(x) sinq sinqξ ]

(q2 − n2π2)(q2 +Gq sin 2q +G2 sin2 q)
. (7)

We have used dimensionless variables defined by

q = ka T = t/(2ma2) ξ = x/a. (8)
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Figure 1. The integration contour of equation (9) in the complexq-space.

Theξ is Winter’sl. Petzold obtained a different but equivalent expression forψ(x, t) by means
of the Laplace transform [8]. Garcı́a-Caldeŕonet al [10–12] also used Laplace transforms. We
find Winter’s formula somewhat simpler.

To evaluate the wavefunctionψ(x, t) of equation (6) is not easy. To our knowledge such
a wavefunction has not been obtained except for the special case ofx = 0 which was done
by Winter [9]. He calculatedψ(0, t) and the probability currentj (0, t) at the barrier and
examined the nature of the decaying system. We are interested inψ(x, t) and j (x, t) for
x 6= 0, in particular, for large values ofx. Following Winter we try to evaluate the integral of
equation (6) by using a closed contour in the complex plane, as shown schematically in figure 1.
If we replaceq with z = seiθ , the factor e−iq2T in equation (7) becomes e−is2T cos 2θes

2T sin 2θ .
This factor tends to zero ass → ∞ if 0 > θ > −π/2. The integral along the arc becomes
negligible in this limit. Therefore, the integral for the wavefunction can be reduced to the
integral along the lineN and contributions from the poles enclosed by the contour,

ψ(x, t) = −
[ ∫

N

f (z) dz + 2π i
∑

(residues)

]
. (9)

The factor(z2 − n2π2) of the denominator off (z) does not give rise to any poles. This
is because of the sinz of the numerator. The poles off (z) are determined by

z2 +Gz sin 2z +G2 sin2 z = 0. (10)

If G� 1, sinz ≈ 0 and hencez ≈ νπ whereν = 1, 2, . . . , or more accurately

zν ≈ νπ
(

1− 1

G
+

1

G2
± iνπ

G2

)
(11)

where we have ignored terms like 1/G3, etc. Only the poles with a negative imaginary part
lie inside the contour. The energyEν and width0ν of the resonances are determined by
zν

2/2ma2 = Eν − i0ν/2. If G� 1, we obtain

Eν ≈ 1

2m

(νπ
a

)2
(

1− 2

G
+

3

G2

)
0ν ≈ 1

2m

4(νπ)3

G2a2
. (12)
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Among the poles, thezν with ν = n contributes dominantly to the integral. If we single
out this pole contribution, we obtain

ψ(x, t) ≈


√

2

a
e−iEn− 1

20nt

[
sin

znx

a
− zn(x + a)

Ga
cos

znx

a

]
−a < x < 0√

2

a
e−iEn− 1

20nt
(
−zn
G

)
eiznx/a x > 0

(13)

which is essentially the Gamow wavefunction for theδ-function potential model. The
amplitude of thisψ(x, t) decays exponentially in time. Outside the barrier, the wavefunction
is an outgoing wave. For a givent the amplitude grows exponentially asx increases. This
is because of the imaginary part ofzn. This wavefunction is not normalizable in the usual
manner over the entire coordinate space. Other potential models yield Gamow wavefunctions
with similar properties [4].

ForG = 6, expansions like equations (11) and (12) are not very accurate. A more accurate
estimate gives0ν/Eν ≈ 0.13 which is not very small. ForG = 100, the expansions in 1/G
works well. The resonances are sharp as can be seen from0ν/Eν ≈ 4νπ/G2 ≈ (1.3×10−3)ν.
The width increases asν increases. In extending Winter’s calculation for the wavefunction,
we have to determine the poles with great accuracy. This can be done as follows. Taking the
real and imaginary parts of equation (10) we obtain two coupled equations. The problem is
then reduced to finding intersections of two curves in the complexz-plane [15]. Starting with
the approximate solution (11), we can solve the coupled equations by iteration to any desired
accuracy.

For the lineN it is convenient to chooseθ = −π/4 so that e−iz2T = e−2s2T . This factor
appears to make the integrand decay rapidly for finitet . However, the integrand also contains
the factors eξs , cosξs, sinξs, as well as a factor that varies slowly withs and falls off as 1/s2

for larges. The integral cannot be done analytically. It converges but its numerical integration
provides a challenge. For large values ofx, the wavefunction, as we will show in the next
section, is very small. However, whenT = 2 andξ = x/a = 50, for example, e−2T s2+ξs has
a maximum value of 5× 1067. With values of the integrand this large, numerical quadratures
will not be able to give results of small values of the integral because of the limited precision
normally provided by computers. For values ofξ = x/a up to about 20 (whenT = 2), any
reasonably sophisticated quadrature or Fourier transform routines give reliable results. But it is
difficult to go further. It should be noted that to obtain a reliable wavefunction, the contributions
due to the poles, which blow up at largex, must be combined with the contribution due to the
line integral alongN .

In figure 2, we show the modulus of the wavefunction|ψ(x, t)| for G = 6 that we
obtained by using equations (6) and (9). In this figure and in dealing with numerical values
in the following, we take units such thata = 1 and 2m = 1 as we said below equation (1).
Then we haveξ = x andT = t . The wavefunction of figure 2 is fort = 2. It is not reliable
beyondx ≈ 20. Figure 3 shows|ψ(x, t)| for G = 6 andt = 2 that we obtained by solving
the time-dependent Schrödinger equation numerically as we will explain in the next section.
This wavefunction agrees very well with that of figure 2 up tox ≈ 20.

One of the very interesting features that Winter obtained is the oscillations in the probability
current, forG = 6 atx = 0 aroundt = 10. The current is negative at times. He found similar
oscillations forG = 20. In figure 4 we reproduce Winter’s result fort = 0–12, and in figures 5
and 6 we obtain the probability current profile for the time intervals fromt = 7–15 whenx = 3
and 10. Surprisingly, the oscillations not only persist but their amplitudes (and their maximum
negative values) increase by orders of magnitude asx increases. We also confirm Winter’s
results using the numerical method described in section 3. We are therefore convinced that the
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Figure 2. The modulus of the wavefunction|ψ(x, t)| for G = 6 andt = 2, obtained by using
equation (6). Units are such that ¯h = 1, 2m = 1 anda = 1. The wavefunction is reliable up to
x ≈ 20, beyond which the results are marred by huge rounding errors.

Figure 3. The modulus of the wavefunction|ψ(x, t)| for G = 6 andt = 2, obtained by solving
the time-dependent Schrödinger equation numerically (section 3). The units are the same as in
figure 2. The dotted curve is that of figure 2. The two curves overlap forx < 20.

negative currents are physical and not due to numerical uncertainties. We return to this point
in section 3 where we find out more about the details of the wavefunction.

3. Integration of the time-dependent Schr̈odinger equation

In order to obtain the wavefunction of the decaying system let us solve a difference-equation
version of the time-dependent Schrödinger equation. Such calculations have been done for
scattering systems [16, 17], but not for a decaying state. We assume that space and time are
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Figure 4. The current at the barrierx = 0, forG = 6, from t = 0–12. This was obtained by
Winter [8]. The units are the same as in figure 2.

Figure 5. The current atx = 3 forG = 6 from t = 7–16. The units are the same as in figure 2.

discretized with small intervals of1x and1t , andψ(x, t +1) andψ(x, t) are related by

ψ(x, t +1t) = 1− i
2H1t

1 + i
2H1t

ψ(x, t). (14)

HereH is the Hamiltonian which we interpret as

H = − 1

2m
D2 + V (x) (15)

whereD2 is the operator such that

D2ψ(x, t) = 1

(1x)2
[ψ(x +1x, t)− 2ψ(x, t) +ψ(x −1x, t)]. (16)
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Figure 6. The current atx = 10 forG = 6 from t = 7–16. The units are the same as in figure 2.

The wavefunction can be expressed as an array ofψi,n ≡ ψ(xi, t), wherexi are the discretized
points with equal interval1x. Then equation (14) can be put into a form of a system of linear
equations forψi,n+1 = ψ(xi, t + 1t). We do this by operating 1 +i2H1t on equation (14)
from the left.

Transformation (14) is unitary and consequently the normalization of the wavefunction
in the sense of

∑
i |ψ(xi, t)|21x = 1 is exactly maintained. Let us add that if one uses

Simpson’s rule rather than the trapezoidal summation formula, the normalization may not be
exactly maintained. Furthermore, the expectation value of the Hamiltonian,

〈H 〉 =
∑
i

ψ∗(xi, t)(D2 + V )ψ(xi, t)1x (17)

remains also constant for allt . This is so even if1t and1x are not small. We have also verified
that the discretized version of the Ehrenfest relation〈p〉 = m d〈x〉/dt is valid for sufficiently
small1x and1t . For the initial wavefunction we take the discretized version ofψ(x, 0) of
equation (5) with the same factor of

√
2/a. It is exactly normalized as

∑
i |ψ(xi, 0)|21x = 1.

As is the case with wavepacket scattering [16] a higher-order formula ofD2 is not required to
give sufficiently accurate results.

For1x and1t in numerical illustrations, we take1x = 0.01 and1t = 0.005. We
replace theδ-function potential atx = 0 with a square barrier of width1x and heightG/1x.
Effects of finite meshes are almost invisible in the figures that we show. Fort we start with
t = 0 and go up tot ≈ 50. In order to have a feel for the space-time scale, let us note that the
radius of the ‘model nucleus’ isa = 1, the decay half-life isτ1/2 = ln 2/0 ≈ 1.08 forG = 6
andτ1/2 ≈ 56 forG = 100. For the range ofx, we take [−1, 999]. Thexmax = 999 is large
enough such that its finiteness has no discernible effect on our numerical solution.

We have already shown|ψ(x, t)| for G = 6 and t = 2 in figure 3. Figure 7 shows
|ψ(x, t)| forG = 6, t = 5, 10, 15, 20, 25, and 30. Figure 8 shows the same quantities as those
of figure 7, except thatG = 100 this time. In figure 8 we can clearly see a wavefront structure
of the wavefunction. The wavefront proceeds with speedv = π . We can also see small
crests proceeding with greater speeds of 2π and 3π . These small crests can be understood as
follows. When the initial wavefunctionψ(x, 0) is written as a superposition of stationary states
φk(x), in addition to the main contribution from the resonance ofn = 1, higher resonances of



Space-time evolution of a decaying quantum state 6355

Figure 7. The modulus of the wavefunction|ψ(x, t)| for G = 6 andt = 0, 5, 10, 15, 20, 25, and
30. The units are the same as in figure 2.

n = 2, 3, . . . also contribute. In the case ofG = 6 the structure of the wavefunction is more
complicated.

Figure 8. The modulus of the wavefunction|ψ(x, t)| for G = 100 andt = 0, 5, 10, 15, 20, 25,
and 30. The units are the same as in figure 2.

In figures 4–6 we showed the current as a function of time forG = 6 atx = 0, 3 and 10.
We noted that the amplitude of the fluctuations is larger for larger values ofx. This can be
related to the wavefunction shown in figure 7. Note that the major peak atx ≈ 50 in the curve
for t = 10 is followed by many small peaks with about the same intervals. Every time such a
peak passes through a point, the current at that point increases. The height of the peak is larger
for largerx. Figure 7, by itself, does not show that the current is negative at certain points.
This could be done by comparing the wavefunction att and the one at a slightly different time.

To shed further light on the current fluctuations, we plot the current att = 8.25 as a
function ofx in figure 9. The curve for the current in the main part of the graph is calculated
using the numerical solution of the Schrödinger equation. The local fluctuations of the current
are due to the fact thatx has been discretized with a finite interval1x. We note that the
current follows the probability density (dotted curve), i.e., they have local extrema at the same
values ofx. The inset shows the analytical calculation (of section 2) of the current for smaller
values ofx than those of the main peak. This shows that the current is negative at its minimum
values, but only slightly so, compared with the overall amplitude of the current. The fact that
the current has negative values locally does not contradict the idea that the overall wave pattern
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Figure 9. The current densityj (x, t = 8.25) as a function ofx is shown as the solid curve, when
G = 6. The dotted curve is the probability density|ψ(x, 8.25)|2. The inset gives an expanded view
of the current calculated by the method of section 2 in the region where it has negative minima.

is travelling outward. The negative currents are very small and occur where the amplitude of
the wave is already a small fraction of the main peak and at times of the order of ten half-lives
of the decaying system. See the appendix in this connection. The amount by which the current
becomes negative increases asx increases up to the second last local minimum before the main
peak of the wave pattern. Let us add that the current exhibits fluctuations also at very short
times. This is related to the part of the wavefunction that propagates ahead of the main peak.

All these calculations can be repeated using a Gaussian potential in place of theδ-function
potential. We find very little difference in the results if a Gaussian with a width of 0.1 at the
‘nuclear’ boundary is used starting with the same initial state. This more realistic model of
the Coulomb barrier does not affect the features discussed in this paper.

4. Approximate wavefunction for x > 0

Since we wish to eventually obtain a wavefunction for the decaying system that can be used in
the quantum mechanical calculation of the ionization probability due to the emittedα particle,
we propose an approximate form of the wavefunction forx > 0. Such a wavefunction is
needed since it is difficult to integrate numerically the time-dependent Schrödinger equation
for theα particle to distances comparable to the size of the atom. We are particularly interested
in such a wavefunction appropriate to a long-livedα emitter.

Let us consider a situation such that the particle inside the potential barrier is in a very sharp
resonance state, the decay rate is very small and the exponential decay law holds. We assume
that the probability distribution flows outwards with a constant speedv, which is also the speed
of the emergingα particle. Then the probability densityρ(0, t) and currentj (0, t) just outside
the barrier are related byj (0, t) = vρ(0, t). The current is equal to−(d/dt)e−0t = 0e−0t ,
which leads to

ρ(0, t) = 0

v
e−0tθ(t) (18)

whereθ(t) ensures that there was no leakage of the probability beforet = 0. If we assume
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that the probability flows out uniformly with speedv, we obtain

ρ(x, t) = 0

v
e−0(t−

x
v
)θ
(
t − x

v

)
(19)

where it is understood thatx > 0. Thisρ(x, t) is normalized as
∫∞

0 ρ(x, t)dx = 1− e−0t . If
there are a large number,N0, of decaying samples att = 0 and all atx = 0 and if one counts
the number of emitted particles detected at a certain positionx from timet to t +1t , one will
find it to beN0ρ(x, t)v1t .

For the wavefunction outside the barrier it would be reasonable to assume, apart from a
possible additional phase factor,

φ(x, t) =
√
ρ(x, t)e−iEteikx (20)

whereE = k2/2m and k = mv. This wavefunction is normalized to 1− e−0t and
conforms toj (0, t) = 0e−0t . By substituting this wavefunction into the Schrödinger equation
i∂φ/∂t = −(1/2m)∂2φ/∂x2 for 0 < x < vt , we find that we need additional phase factors.
In this way we arrive at

φ(x, t) =
√
0

v
eiγe−

0
2 (t− x

v
)e−i[E− 1

2m (
0
2v )

2]teikxθ
(
t − x

v

)
(21)

where the constant phase factor eiγ is related to the choice of the initial wavefunction. Keeping
one further term of the expansion in 1/G of the approximation of0 in equation (12), we obtain
the expressions forv and0 which we used to evaluate the wavefunctions shown in figure 10,
i.e.,

v ≈ 2π
√

1− 2/G (22)

and

0 ≈ 4π3

G2

(
1− 1

G

)
(23)

wherea = 2m = 1. It should be noted that equation (21) is an exact solution of the time-
dependent Schrödinger equation for 0< x < vt .

Figure 10 compares forG = 100, the modulus of the approximate wavefunction and
the one obtained by solving the time-dependent Schrödinger equation numerically. The
approximate wavefunction works well forG = 100. However, it does not give a good
representation of the wavefunction forG = 6. Recall that forG = 6, 0/E ≈ 0.13 which is
not very small. It is clear that we cannot assume a uniform speedv in this case. In contrast to
this, forG = 100,0/E ≈ 1.3×10−3. As we point out in section 5, the value of0/E is much
smaller in the actualα-decay processes. The wavefunction (21) will work even better in such
situations.

Figure 10 shows only the modulus of the wavefunction. For the phase of the wavefunction,
if we set eiγ = −1, the phase of the approximate wavefunction forG = 100 becomes virtually
indistinguishable from that of the wavefunction obtained by solving the time-dependent
Schr̈odinger equation. The reason for this choice ofγ is the following. Theψ(x, 0) is negative
just inside the barrier. When it leaks out through the barrier the wavefunction remembers its
sign, that is, Reψ(1x,1t) < 0.

We have obtained the approximate wavefunction for outside of the potential barrier. For
the inside, a first approximation is

φ(x, t) = e−i(E− i
20)tψ(x, 0) for − a < x < 0 (24)

whereψ(x, 0) is that of equation (5). We have confirmed that this is a good approximation
whenG � 1. Thisφ(x, t) for the inside together with that of equation (21) for the outside
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Figure 10. The absolute value of the approximate wavefunctionφ(x, t) of equation (20) for
G = 100 att = 20 plotted as a solid line. The modulus of the actual wavefunctionψ(x, t) as one
of the curves in figure 8 is plotted as the dashed curve.

is correctly normalized to unity. Theφ(x, t) of equation (24), however, vanishes atx = 0.
Therefore, there is a slight mismatch atx = 0 between the inside and outside parts of this
wavefunction.

5. Conclusion and discussion

We have examined a one-dimensional model that simulates, e.g., theα-decay process. A
particle is initially confined within a ‘nucleus’ and begins to leak out att = 0 tunnelling
through a potential barrier. We were interested in obtaining the wavefunction of the model at
all distances. We first attempted to extend Winter’s calculation for the wavefunction. We were
only able to do so up to a certain distance from the ‘nucleus’. We examined the current outside
the potential barrier. We found that the fluctuations of the current that Winter discovered
become much larger as the distance from the potential barrier increases. These fluctuations
can be understood in terms of the fluctuations of the wavefunction preceding and following
the main peak. We then obtained the time-dependent wavefunctionψ(x, t) in the entire space
by solving the time-dependent Schrödinger equation numerically. As far as we know this is
the first time that such a wavefunction has been obtained explicitly. When the potential barrier
is very strong and the decay rate is very low, theψ(x, t) obtains a simple structure. It can be
well represented by the approximate wavefunctionφ(x, t) which we obtained in a heuristic
manner. Unlike the commonly used Gamow wavefunction, this wavefunction (and of course
the solution of the time-dependent Schrödinger equation) is normalized in the usual manner.
Our approximate wavefunction is expected to be useful in quantum mechanical calculations
of the atomic ionization process caused by nuclearα decay.

For the strength of the potential barrier that controls the decay rate, we considered two
cases,G = 6 and 100. For the main resonance (ofn = 1) that is involved,0/E ≈ 0.13 for
G = 6 whereas0/E ≈ 1.3× 10−3 for G = 100. These choices of the value ofG represent
two typical situations: the resonance is rather broad in one and is very sharp in the other. In
the actualα-decay processes, the ratio0/E is much, much smaller. As an example let us
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consider Po212 as the parent nucleus. Its decay rate is the fastest among the usually listed
α-decay examples, e.g., see [18]. The energy of the emittedα particle isE = 8.95 MeV and
0 = 2.31×106 s−1. This means the dimensionless ratio of0/E = 1.70×10−16. Note that in
natural units (c = 1, h̄ = 1), 1 s−1 = 6.58× 10−22 MeV. The ratio can be reproduced by our
model withG = 3.7× 108. WhenG is this large, the wavefunction of equation (21) works
extremely well. It will be very useful as an approximate wavefunction for theα particle in
examining atomic ionization caused byα decay.

The reason why we took small values ofG, which are unrealistic forα decay, in our
numerical illustrations is the following. IfG is very large and accordingly the decay is very
slow, we have to integrate the Schrödinger equation to a very large value oft before we can
see anything interesting. This is technically difficult. The quantity0 which is proportional
to the reciprocal of the half-life, however, is a power series in 1/G starting with 1/G2. Thus
for very largeG, the half-life scales asG2. We therefore believe thatG = 100 is sufficiently
large to illustrate the essential features of cases of very strongG.
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Appendix

In this appendix we illustrate a situation such that, even if the expectation value of the
momentum is positive, the current density can be locally negative. This phenomenon was
first observed in connection with decay problem by Winter [9] and is corroborated by the
results of this paper.

Let us start with a free Gaussian wavepacket with its centre at rest at the origin. Its
wavefunction is [19]

φ0(x, t) = (2π)−1/4

(
λ +

it

2mλ

)−1

exp

( −x2

4λ2 + 2it/m

)
(A.1)

where(1x)t=0 = λ. The current density is given by

j0(x, t) = xt

m2λ4 + t2
|φ0(x, t)|2. (A.2)

The expectation value ofj0(x, t) is zero.
Next we let the wavepacket move with a constant speedv > 0. The wavefunction and

current density become

φ(x, t) = φ0(x − vt, t)ei(mvx− 1
2mv

2t) (A.3)

j (x, t) = v|φ(x, t)|2 + j0(x − vt, t). (A.4)

In (A.4) the second term can be negative. The first term, however, normally dominates so that
j (x, t) is positive.

A more interesting situation obtains if we assume thatψ(x, t) is a superposition of two
wavepackets,

ψ(x, t) = c1ψ1(x, t) + c2ψ2(x, t) (A.5)

ψ1(x, t) = φ(x − b, t) ψ2(x, t) = φ(x + b, t). (A.6)
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The two wavepackets are separated by distance 2b. They both move with speedv. For
simplicity let us assume thatc1 andc2 are both real and

|c1 + c2| � 1. (A.7)

It then follows thatψ(x, t) vanishes in the vicinity of the midpoint(x = vt) of the two
wavepackets. The current density atx = vt turns out to be

j (x = vt, t) =
[
(c1 + c2)

2v − (c
2
1 − c2

2)bt

4m2λ4 + t2

]
|ψ(x, t)|2. (A.8)

If we put c1 = c + ε andc2 = −c + ε then(c1 + c2)
2 = 4ε2 andc2

1 − c2
2 = 4cε. If |ε/c| � 1,

then the second term in the square brackets of (A.8) can become more important than the
first, andj (x, t) can become negative. Note that the negative current density occurs when the
probability density almost vanishes.

We have chosenc1 andc2 such that they are approximately equal in magnitude. If we
choosec1 larger thanc2 in magnitude, the point at whichψ(x, t) vanishes is shifted towards
the second wavepacket. In the vicinity of that point,j (x, t) can become negative.
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